skip to main content


Search for: All records

Creators/Authors contains: "Hannay, Cecile"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The relative importance of radiative feedbacks and emissions scenarios in controlling surface warming patterns is challenging to quantify across model generations. We analyze three variants of the Community Earth System Model (CESM) with differing equilibrium climate sensitivities under identical CMIP5 historical and high‐emissions scenarios. CESM1, our base model, exhibits Arctic‐amplified warming with the least warming in the Southern Hemisphere middle latitudes. A variant of CESM1 with enhanced extratropical shortwave cloud feedbacks shows slightly increased late‐21st century warming at all latitudes. In the next‐generation model, CESM2, global‐mean warming is also slightly greater, but the warming is zonally redistributed in a pattern mirroring cloud and surface albedo feedbacks. However, if the nominally equivalent CMIP6 scenario is applied to CESM2, the redistributed warming pattern is preserved, but global‐mean warming is significantly greater. These results demonstrate how model structural differences and scenario differences combine to produce differences in climate projections across model generations.

     
    more » « less
  2. Abstract

    The Community Earth System Model (CESM) is widely used for the prediction and understanding of climate variability and change. Accurate simulation of the behavior of near surface air temperature (T2m) is critical in such a model for addressing societally relevant problems. However, previous versions of CESM suffered from an overestimation of wintertimeT2mvariability in Northern Hemisphere (NH) land regions. Here, it is shown that the latest version of CESM (CESM2) exhibits a much improved representation of wintertimeT2mvariability compared to its predecessor and it now compares well with observations. A series of targeted experiments reveal that an important contributor to this improvement is the local effects of changes to the representation of snow density within the land surface component. Increased snow densities in CESM2 lead to enhanced conductance of the snow layer. As a result, larger heat fluxes across the snow layer are induced in the presence ofT2manomalies, leading to a greater dampening of surface and near surface atmospheric temperature anomalies. The implications for future projections with CESM2 are also considered through comparison of the CESM1 and CESM2 large ensembles. Aligned with the reduction in surface temperature variability, compared to CESM1, CESM2 exhibits reduced ensemble spread in future projections of NH winter mean temperature and a smaller decline in daily wintertimeT2mvariability under climate change. Overall, this improvement has increased the accuracy of CESM2 as a tool for the study of wintertimeT2mvariability and change.

     
    more » « less
  3. Abstract

    A spurious increase in the interannual variability of prescribed biomass burning (BB) emissions in the CMIP6 forcing database during the satellite era of wildfire monitoring (1997–2014) is found to lead to warming in the Northern Hemisphere extratropics in simulations with the Community Earth System Model version 2 (CESM2). Using targeted sensitivity experiments with the CESM2 in which prescribed BB emissions are homogenized and variability is removed, we show that the warming is specifically attributable to BB variability from 40° to 70°N and arises from a net thinning of the cloud field and an associated increase in absorbed solar radiation. Our results also demonstrate the potential pitfalls of introducing discontinuities in climate forcing data sets when trying to incorporate novel observations.

     
    more » « less
  4. Abstract

    We compare equilibrium climate sensitivity (ECS) estimates from pairs of long (≥800‐year) control and abruptly quadrupled CO2simulations with shorter (150‐ and 300‐year) coupled atmosphere‐ocean simulations and slab ocean models (SOMs). Consistent with previous work, ECS estimates from shorter coupled simulations based on annual averages for years 1–150 underestimate those from SOM (−8% ± 13%) and long (−14% ± 8%) simulations. Analysis of only years 21–150 improved agreement with SOM (−2% ± 14%) and long (−8% ± 10%) estimates. Use of pentadal averages for years 51–150 results in improved agreement with long simulations (−4% ± 11%). While ECS estimates from current generation U.S. models based on SOM and coupled annual averages of years 1–150 range from 2.6°C to 5.3°C, estimates based longer simulations of the same models range from 3.2°C to 7.0°C. Such variations between methods argues for caution in comparison and interpretation of ECS estimates across models.

     
    more » « less
  5. Abstract

    The Community Earth System Model 2 (CESM2) is the latest Earth System Model developed by the National Center for Atmospheric Research in collaboration with the university community and is significantly advanced in most components compared to its predecessor (CESM1). Here, CESM2's representation of the large‐scale atmospheric circulation and its variability is assessed. Further context is providedthrough comparison to the CESM1 large ensemble and other models from the Coupled Model Intercomparison Project (CMIP5 and CMIP6). This includes an assessment of the representation of jet streams and storm tracks, stationary waves, the global divergent circulation, the annular modes, the North Atlantic Oscillation, and blocking. Compared to CESM1, CESM2 is substantially improved in the representation of the storm tracks, Northern Hemisphere (NH) stationary waves, NH winter blocking and the global divergent circulation. It ranks within the top 10% of CMIP class models in many of these features. Some features of the Southern Hemisphere (SH) circulation have degraded, such as the SH jet strength, stationary waves, and blocking, although the SH jet stream is placed at approximately the correct location. This analysis also highlights systematic deficiencies in these features across the new CMIP6 archive, such as the continued tendency for the SH jet stream to be placed too far equatorward, the North Atlantic westerlies to be too strong over Europe, the storm tracks as measured by low‐level meridional wind variance to be too weak and a lack of blocking in the North Atlantic sector.

     
    more » « less
  6. Abstract

    Two high‐resolution versions of a Coupled Earth System Model (CESM1.3: 0.25° atmosphere, 1° ocean; CESM1.1: 0.25° atmosphere, 0.1° ocean) are compared to the standard resolution CESM1.1 and CESM1.3 (1° atmosphere, 1° ocean). The CESM1.3 versions are documented, and the consequences of model resolution, air‐sea coupling, and physics in the atmospheric models are studied with regard to storm tracks in the Southern Hemisphere as represented by 850‐hPa eddy kinetic energy. Increasing the resolution from 1° to 0.25° in the atmosphere (same physics) coupled to the 1° ocean intensifies the strength of the storm tracks closer to observations. The 0.25° atmosphere with the older CESM1.1 physics coupled to the 0.1° ocean has fewer low clouds, warmer Southern Ocean sea surface temperatures, a weaker meridional temperature gradient, and a degraded storm track simulation compared to the 0.25° atmosphere with CESM1.3 physics coupled to the 1° ocean. Therefore, deficient physics in the atmospheric model can negate the gains attained by higher resolution in atmosphere and ocean.

     
    more » « less