skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hannay, Cecile"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Climate simulation uncertainties arise from internal variability, model structure, and external forcings. Model intercomparisons (such as the Coupled Model Intercomparison Project; CMIP) and single-model large ensembles have provided insight into uncertainty sources. Under the Community Earth System Model (CESM) project, large ensembles have been performed for CESM2 (a CMIP6-era model) and CESM1 (a CMIP5-era model). We refer to these as CESM2-LE and CESM1-LE. The external forcing used in these simulations has changed to be consistent with their CMIP generation. As a result, differences between CESM2-LE and CESM1-LE ensemble means arise from changes in both model structure and forcing. Here we present new ensemble simulations which allow us to separate the influences of these model structural and forcing differences. Our new CESM2 simulations are run with CMIP5 forcings equivalent to those used in the CESM1-LE. We find a strong influence of historical forcing uncertainty due to aerosol effects on simulated climate. For the historical period, forcing drives reduced global warming and ocean heat uptake in CESM2-LE relative to CESM1-LE that is counteracted by the influence of model structure. The influence of the model structure and forcing vary across the globe, and the Arctic exhibits a distinct signal that contrasts with the global mean. For the 21st century, the importance of scenario forcing differences (SSP3–7.0 for CESM2-LE and RCP8.5 for CESM1-LE) is evident. The new simulations presented here allow us to diagnose the influence of model structure on 21st century change, despite large scenario forcing differences, revealing that differences in the meridional distribution of warming are caused by model structure. Feedback analysis reveals that clouds and their impact on shortwave radiation explain many of these structural differences between CESM2 and CESM1. In the Arctic, albedo changes control transient climate evolution differences due to structural differences between CESM2 and CESM1. 
    more » « less
  2. Abstract The relative importance of radiative feedbacks and emissions scenarios in controlling surface warming patterns is challenging to quantify across model generations. We analyze three variants of the Community Earth System Model (CESM) with differing equilibrium climate sensitivities under identical CMIP5 historical and high‐emissions scenarios. CESM1, our base model, exhibits Arctic‐amplified warming with the least warming in the Southern Hemisphere middle latitudes. A variant of CESM1 with enhanced extratropical shortwave cloud feedbacks shows slightly increased late‐21st century warming at all latitudes. In the next‐generation model, CESM2, global‐mean warming is also slightly greater, but the warming is zonally redistributed in a pattern mirroring cloud and surface albedo feedbacks. However, if the nominally equivalent CMIP6 scenario is applied to CESM2, the redistributed warming pattern is preserved, but global‐mean warming is significantly greater. These results demonstrate how model structural differences and scenario differences combine to produce differences in climate projections across model generations. 
    more » « less
  3. Abstract The Community Earth System Model (CESM) is widely used for the prediction and understanding of climate variability and change. Accurate simulation of the behavior of near surface air temperature (T2m) is critical in such a model for addressing societally relevant problems. However, previous versions of CESM suffered from an overestimation of wintertimeT2mvariability in Northern Hemisphere (NH) land regions. Here, it is shown that the latest version of CESM (CESM2) exhibits a much improved representation of wintertimeT2mvariability compared to its predecessor and it now compares well with observations. A series of targeted experiments reveal that an important contributor to this improvement is the local effects of changes to the representation of snow density within the land surface component. Increased snow densities in CESM2 lead to enhanced conductance of the snow layer. As a result, larger heat fluxes across the snow layer are induced in the presence ofT2manomalies, leading to a greater dampening of surface and near surface atmospheric temperature anomalies. The implications for future projections with CESM2 are also considered through comparison of the CESM1 and CESM2 large ensembles. Aligned with the reduction in surface temperature variability, compared to CESM1, CESM2 exhibits reduced ensemble spread in future projections of NH winter mean temperature and a smaller decline in daily wintertimeT2mvariability under climate change. Overall, this improvement has increased the accuracy of CESM2 as a tool for the study of wintertimeT2mvariability and change. 
    more » « less